Integrable system with peakon, weak kink, and kink-peakon interactional solutions

Zhijun (George) Qiao
Department of Mathematics, University of Texas - Pan American, Edinburg, TX 78539,
U.S.A.
email: qiao@utpa.edu

Abstract

: In this presentation, we present an integrable system with both quadratic and cubic nonlinearity: $m_{t}=b u_{x}+\frac{1}{2} k_{1}\left[m\left(u^{2}-u_{x}^{2}\right)\right]_{x}+\frac{1}{2} k_{2}\left(2 m u_{x}+m_{x} u\right), m=u-u_{x x}$, where b, k_{1} and k_{2} are arbitrary constants. This model is kind of a cubic generalization of the Camassa-Holm (CH) equation: $m_{t}+m_{x} u+2 m u_{x}=0$. The equation is shown integrable with its Lax pair, bi-Hamiltonian structure, and infinitely many conservation laws. In the case of $b=0$, the peaked soliton (peakon) and multi-peakon solutions are studied. In particular, the two-peakon dynamical system is explicitly presented and their collisions are investigated in details. In the case of $b \neq 0$ and $k_{2}=0$, the weak kink and kink-peakon interactional solutions are found. Significant difference from the CH equation is analyzed through a comparison. Finally, we also show all possible smooth one-soliton solutions for the system.

References:

1. Zhijun Qiao, Baoqiang Xia, and Jibin Li, Integrable system with peakon, weak kink, and kink-peakon interactional solutions, arXiv:1205.2028v2 [nlin.SI].
2. Baoqiang Xia, Zhijun Qiao, and Ruguang Zhou, A synthetical integrable twocomponent model with peakon solutions, arXiv:1301.3216 [nlin.SI].
